
Journal of Cancer
Research & Therapy

Review

Taylor MA et al., J Cancer Res Ther. 2021, 9(1):1-11
http://dx.doi.org/10.14312/2052-4994.2021-1

Advances in artificial neural networks as a disease prediction tool
Matthew A. Taylor1, Charles L. Bennett2, Martin W. Schoen3, and Shamia Hoque4,*

1School of Medicine, University of South Carolina, Columbia, SC 29209, USA
2College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
3Department of Internal Medicine, Saint Louis University, Saint Louis, MO 63103, USA
4College of Engineering and Computing, University of South Carolina, Columbia, SC 29201, USA

Abstract

Throughout the last decade, utilization of machine learning has seen a sharp rise in fields such as computing, transportation, engineering, 
and medicine. Artificial neural networks (ANNs) have demonstrated increased application due to their versatility and ability to learn from 
large datasets. The emergence of electronic health records has propelled healthcare into an era of personalized medicine largely aided 
by computers. This review summarizes the current state of ANNs as a predictive tool in medicine and the downfalls of reliance on a 
self-adjusting computer network to make healthcare decisions. Medical ANN studies can be grouped into three categories - Diagnosis, 
Classification, and Prediction, with diagnostic studies currently dominating the field. However, recent trends show prediction studies 
may soon outnumber the remaining categories. ANN prediction studies dominate in fields such as cardiovascular disease, neurologic 
disease, and osteoporosis. Neural networks consistently show higher predictive accuracy than industry standards. But several pitfalls 
are preventing mainstream adoption. Clinicians often rely on situational pearls to make complex healthcare decisions, ANNs often do 
not account for intuitive variables during their analysis. Instead, ANNs rely on incomplete patient data and ‘black box’ computing to make 
decisions that are not completely transparent to the end-user. This has led to ‘runaway’ networks that may ultimately make inaccurate 
and harmful decisions. This review emphasizes the extensive potential of machine learning in medicine and the obstacles that must be 
overcome to utilize its full potential.
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1.0 – Introduction

Artificial intelligence (AI) is the capability of computers 
to learn from their environment and adapt over time 
to achieve a goal without human input. Also known 
as ‘machine learning’, computers have been using this 
concept for decades to advance products in a variety of 
fields. GPS navigation, virtual assistants, social media 
services, and search engines are all examples of services 
that rely heavily on machine learning to enhance their 
product [1–3]. A subset of machine learning, known as 
‘artificial neural networks’ (ANN), has become one of the 
most popular machine learning modalities. ANNs are 
modeled after the neuronal networks that make up the 
human nervous system. ANNs gather information through 
a series of inputs, process those inputs according to their 
relative importance, and make a determination based on 
an assigned goal.

In medicine, ANNs are valued for their ability to quickly 
process vast amounts of information. Their medical use 
can be divided into three general categories: (1) Diagnosis 
(2) Classification (3) Prediction. Examples include medical 
image analysis in radiology, classifications of tumor 
biopsies, and models to predict the likelihood of coronary 
artery disease development [4]. ANN applications in medical 
diagnosis and classification have been well established for 

decades, but disease prediction remains in its early stages. 
This review focuses on the recent advances of ANNs in 
disease prediction, its pitfalls, and future pathways towards 
advancement.

1.1 – Artificial neural network design
An artificial neural network is a processing algorithm 
that is modeled after neurological pathways to emulate 
the human learning process, hence the name ‘neural 
network’. Like the human brain, ANNs are powered by a 
series of external inputs. Each input represents a different 
attribute related to the desired output [5]. For example, 
when identifying a cat [output] one must first recognize 
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attributes such as fur patterns, body shape, size, and tail 
[inputs]. Each input attribute is a node in the input layer. 
This layer is connected to the output via a hidden layer 
with adjustable number of nodes (Figure 1a). Weights or 
coefficients assigned to the nodes are adjusted depending 
on its estimated correlation with the desired output [6]. 
It is expected that fur patterns and body shape, which 
are the attributes that most easily identify cats, would be 
assigned the greatest weight. Size and tail are common to 
both cats and small dogs, hence they would be assigned 
‘smaller’ weights comparatively [6].

Figure 1a Architecture of a simple artificial neural network. Training data 
is entered into the neural network as input values [red circles] depicted by 
‘Xn’. Inputs are connected to nodes [blue circles] within the hidden layer 
[blue rectangle]. The hidden layer is often referred to as the ‘black box’ [gray 
rectangle]. The number of nodes is variable and determined by the user. The 
neural network assigns each node a bias, which determines how powerful 
it believes each particular node is at determining the desired output value, 
depicted by ‘Yn’. Each node connects to an available output [green circle], 
which is assigned by the user before the neural network is trained.

Similar to humans, ANNs must first learn which inputs 
likely correspond to an output. There are three different 
learning mechanisms that can be utilized: (1) supervised 
learning (2) unsupervised learning (3) reinforcement 
learning [7]. Initially, each input node is multiplied with an 
arbitrary weight. At each node of the hidden layer, these 
weighted inputs are summed, and a bias added. The 
combined input is passed through an activation function, 
propagated through the ANN and an output is produced 
with varying accuracy. The ANN then adjusts the input 
weights to compensate for the output errors recorded 
during the previous processing cycle. Time spent learning 
and degree of input weight adjustment are determined 
through the learning rate & momentum, respectively. 
Each additional training cycle and corresponding network 
adjustments will continue to improve the output accuracy 
of the ANN. These cycles are continued until the ANN is 
adequately trained and demonstrates sufficient accuracy 
to the preference of the user [5].

1.2 – Deep neural networks
Deep neural networks (DNN) are extensions of basic ANNs 
that are used to solve increasingly complex problems. 
Any ANN with more than three layers [input, hidden, and 
output] are considered DNNs (Figure 1b). Deep learning 

involves the development of algorithms that are more 
generalizable as opposed to task-specific [8]. The utility 
of deep learning for analyzing large amounts of data can 
also be its source of limitation - it requires data. Healthcare 
data is strictly protected and often constrained within a 
particular medical system [9].

Figure 1b Architecture of a deep neural network. Each node within a hidden 
layer assigns a bias based on how powerful the neural network determines 
its data is at determining an output. The biased node then connects to the 
next hidden layer. This process repeats until the final hidden layer connects 
to an output, which is determined by the user. A neural network with > 1 
hidden layers or > 3 total layers (input, hidden, output) is considered a deep 
neural network.

For example, a deep recurrent neural network was 
designed to predict severe post-operative complications 
including mortality, renal failure, and hemorrhage after 
cardiothoracic surgery. A database containing 42,007 
was used and yielded positive predictive values between 
0.84 - 0.9 [10]. Another study assessed the performance 
of different predictive modeling tools, including deep 
learning, in the urgent care setting. The models utilized 
a database of 58,976 unique patients to analyze medical 
histories, physiological time series, and demographics 
data to predict mortality, disease differentials, and disease 
markers. The deep learning recurrent neural network 
out-performed other standard machine learning models, 
random forest, gradient boost classifier, and feed-forward 
multilayer NN for mortality prediction and diagnostics [11-
23].

2.0 – Disease prediction

A survey of the literature from the past twenty years 
confirms the increasing trend of the use of neural 
networks. Studies can be grouped into three categories 
- Diagnosis, Classification, and Prediction with the 
‘Diagnosis’ category dominating (Figure 2). While there 
is little difference between the number of total studies 
focusing on ‘Classification’ or ‘Prediction’ over the last 
decade, investigations utilizing neural nets for ‘Prediction’ 
is trending upwards. Notably, total 'Prediction' studies in 
the most recent year are set to outnumber Diagnosis and 
Classification studies (Figure 3).

3.1 – Study selection
Study selection was performed through PubMed/ MEDLINE 
and Google Scholar searches for the terms ‘neural network’, 
‘disease’, and ‘prediction’ for the periods of 1999-2019. 
Search totals and category comparison are visualized in 
(Figures 2 and 3). Articles were then selected based on (1) 
clinical relevance (2) study quality (3) English language, and 
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(4) article accessibility. Study quality was assessed by the 
presence of overfitting leading to improbable statistical 
conclusions, poorly described neural network design, and 
cohorts less than 50 patients. Non-peer reviewed studies, 
conference abstracts, and unverifiable titles were also 
excluded.

Figure 2 Total neural network prediction publications was determined by a 
Google Scholar analysis using Publish or Perish software [106]. The terms 
‘neural’ + ‘network’ + ‘disease’ + ‘diagnosis’ or ‘classification’ or ‘prediction’ 
were input into the software. Titles from 1999 – 2019 were filtered by 
disqualifying non-peer reviewed publications, conference abstracts, and 
titles without a verifiable link.

Figure 3 Total neural network prediction publications was determined 
by a Google Scholar meta-analysis using Publish or Perish software [106]. 
The titles were filtered by the previously described method in (Figure 2). 
Remaining titles were separated by year and quantified.

3.2 – Cardiovascular disease
Cardiovascular disease (CVD) is a leading cause of death 
across the world. Therefore, primary prevention remains 
a paramount public health initiative [24]. Risk assessments 
such as the ASCVD Risk Algorithm and the Reynolds Risk 
Score are used in every day practice to evaluate a patient’s 
risk for CVD [25, 26]. These algorithms use static formulas 
based on limited risk factors to predict the likelihood of 
developing CVD. Recent studies have used neural networks 
to develop personalized CVD prediction models with 
accuracies that rival established clinical tools [27–29].

A study aiming to predict a first cardiovascular event over 
10 years in non-diseased individuals analyzed 30 risk 
factors with four different machine learning algorithms and 
compared them to the American Heart Association (AHA) 
prediction model. They found that amongst all models, 
neural networks successfully predicted 4,998/7,404 
cardiovascular events (sensitivity 67.5%) and 53,458/75,585 
of non-cases. This amounts to a 7.6% improvement over 
the AHA prediction model [27]. Another study compared 

artificial neural networks versus the Diamond-Forrester 
(DF) and the Morise models (MM) to stratify the risk of 
inducible ischemia by cardiac stress testing. The study 
evaluated 486 patients undergoing radionucleotide and 
exercise stress testing and found that the ANN had a 
significant increase in predictive power compared to the DF 
and MM models. The ANN model demonstrated a sensitivity 
of 91%, specificity of 65%, PPV of 26%, and NPV of 98%, 
which ultimately reduced unnecessary stress imaging by 
59% [30]. Finally, a study used a deep feed-forward neural 
network to analyze 5436 patients and predict the one-year 
mortality in patients diagnosed with an acute myocardial 
infarction. The model utilized a significant number of 
variables involving demographics, diagnostics, treatments, 
and lab values to ultimately arrive at a prediction accuracy 
of 85.12% and a peak AUC of 0.901 [31].

Medical experts commonly dispute the use of neural 
networks due to its unknown ‘black box’ prediction using 
one or more hidden layers. A study used data from the 
Korean Centers for Disease Control and Prevention to 
predict an individual’s risk for developing CVD. They first 
identified each input by using CVD risk factor sensitivities 
as detected with a previously trained NN. The hidden layer 
was then bypassed by connecting correlated inputs to the 
hidden layer in a coupled connection, which avoided the 
hidden reorganization of the inputs within the layer. The 
model resulted in a more accurate CVD risk prediction 
than the compared Framingham Risk Score [32].

3.2.1 – Heart failure
Prolonged cardiovascular disease often leads to 
advanced heart failure, coronary artery bypass grafting, 
and prolonged stays in the intensive care unit [33–35]. 
Researchers in the year 2000 designed a ANN to predict 
the one-year mortality in 132 patients with heart failure. 
A network consisting of 62 inputs, 20 hidden nodes, and 
3 output nodes successfully predicted 93.2% of one-year 
deaths, readmissions, and event-free survivals. One-year 
death rates were predicted with 95.2% sensitivity and 
97.8% specificity with an AUC of 0.971. The authors note 
the results should be interpreted with caution due to the 
small sample size. Overfitting is likely to have occurred 
based on comparing the number of adjustable parameters 
and the sample size (Table 1) [36].

Another study compared an ANN with logistic regression 
(LR) and Cox Proportional Hazard (CPH) models to predict 
the incidence of cardiovascular-related deaths in 2,635 
patients with heart failure. The model used eight inputs in 
a feed-forward neural network and had slightly improved 
predictive abilities compared to the LR and CPH models, 
with receiver operating characteristic (ROC) curves of 0.72, 
0.70, and 0.69, respectively [37]. A later study recognized 
that deep neural networks had little advantage over 
logistic regression models when predicting heart failure 
readmission and were susceptible to overfitting. Instead, 
a deep unified network (DUN) was designed to predict 30-
day readmission rates in 11,510 patients with heart failure. 
DUNs are deep learning networks that bind each hidden 
layer together in a mesh-like pattern, allowing all hidden 
layers to learn directly from the input data. This design will 
theoretically reduce overfitting. Using AUC as the primary 
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Table 1 A summary table of the neural network prediction studies described in this review. In studies where multiple sensitivities/specificities were 
measured, the peak sensitivity value is recorded in the chart.

Topic Primary 
author 
(Year)

Sample 
size 

Machine learning model 
[inputs, hidden layer nodes, outputs]

Adjustable 
parameters 

Sensitivity/ Specificity
AUC PPV/NPV

Accuracy Study limitations 

Cardiovascular disease 

10 Year ASCVD 
risk

Weng et al. 
[27]

378,256 Artificial neural 
network 
[Not detailed]

67.5% / 70.7%
0.764

18.4% / 95.7%

Black box, overfitting

 Inducible 
ischemia 

Isma’eel et al. 
[30]

486 Artificial neural 
network 

[3,3,1]

Biases = 4
Weights = 12

AP = 16

91% / 65%
--

26% / 98%

Sample size, input 
variables and 
parameters

 Myocardial 
infarction

Barrett et al. 
[31]

5,436 Feed forward deep 
neural network

--
0.901

--

85.12% Imbalanced dataset

ASCVD 
development

Kim et al. [32] 4,146 Artificial neural 
network 

[16,4,1]

Biases = 5
Weights = 68

AP = 73

81.5% / *
--

67.6% / 85.1%

81.1% Study focused on 
overcoming black box 

limitations

Heart failure one-
year prognosis

Atienza et al. 
[36]

132 Artificial neural 
network 

[62,20,3]

Biases = 23
Weights = 1300

AP = 1323

95.2% / 97.8%
0.971

--

93.2% Input weights not well 
defined

Heart failure 
mortality

Myers et al. 
[37]

2,635 Artificial neural 
network 

[8,7,2]

Biases = 9
Weights = 70

AP = 79

79% / 63%
--
--

72% Data bias, incomplete 
input variable dataset

 Heart failure 
30-day hospital 

readmission

Golas et al. 
[38]

11,510 Deep neural network
[N/A} 

--
0.705

--

76.4% Overfitting, dataset, 
generalizability to 
other health care 

systems

Stroke

Ischemic stroke 
outcome

Heo et al. [44] 2604 Deep neural network 
[38,15,15,15,2]

Biases = 47
Weights = 1050

AP = 1097

--
0.888

--

Single-center study, 
embolectomy 

patients excluded

Post -tPA 
outcome

Nielsen et al. 
[45]

222 Deep convolutional 
neural network 

[N/A]

--
0.88

--

Data bias, dataset

Post-
thrombectomy 

outcome 

Asadi et al. 
[46]

107 Artificial neural 
network 
[Not detailed]

--
0.6
--

Black box, lack of 
interpretability of 

models

Ischemic to 
hemorrhagic 

stroke 
transformation

Yu et al. [53] 165 Artificial neural 
network 
[Not detailed]

--
0.693

--

80.7% Single-center study, 
small dataset, 

random sampling

ACA aneurysm 
rupture risk

Liu et al. [54] 594 Artificial neural 
network 
[17,34,34,2]

Biases = 70
Weights = 1802

AP = 1872
95.0% / 92.6%

0.953
--

94.8% Single-center study, 
imbalanced dataset, 
no long-term follow-

up

Parkinson disease 

Genetic risk 
of parkinson 

disease

Kumudini et 
al. [59]

306 Artificial neural 
network 

[21,*,2]

--
0.86

--

CT imaging to 
predict Parkinson 

disease 
progression

Tang et al. 
[61]

69 Artificial neural 
network 

[98,5,2]

Biases = 5
Weights = 900

AP = 905

75%

Alzheimer disease

MRI image 
analysis predicts 

AD

Lin et al. [70] 818 Deep convolutional 
neural network 

[4,32,32,32,32,64,64,1024,2]

84% / 74.8%
0.878

--

79.9% No long-term follow-
up

Clinical score 
prediction using 
neuroimaging

Bhagwat et al. 
[71] 1,606

Series of neural 
networks in stages

Subjective data as 
inputs, computing 

constraints
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Osteoporosis

Bone mineral 
density 

assessment 

Yoo et al. [83] 1,674 Artificial neural 
network 

 [Not detailed]

76.6% / 74.4%
0.807

62.9% / 84.8%

75.2% Dataset, data bias, 
input variables

Hip fracture risk 
assessment

Liu et al. [84] 725 Artificial neural 
network
[74,140,1] (F) 

[74,37,1] (F) 

[67,140,1] (M)

[67,34,1] (M)

--
0.91 (F)*,0.99 (M)

--

85% (F)*

93% (M)

Adverse drug reactions

Detecting 
potential ADRs

Wang et al. 
[87]

746 Deep neural network 

[17,1024,512,128,1325]

--
0.844

--

Limited dataset, 
model only predicted 

existing ADRs

Drug molecular 
analysis to 

predict ADRs

Dey et al. [89] [N/A] Deep convolutional 
neural network 

[N/A]

--
0.957

74.2% / 95.0%

94.5% No patient data used

Drug-drug 
interactions

Rohani et al. 
[90]

2,062 Artificial neural 
network 

[7,5,4,2]

Biases = 11
Weights = 63

AP = 74

--
0.954 – 0.994

--

No patient data used

Abbreviation: PPV = positive predictive value; NPV = negative predictive value; AUC = area under curve; ASCVD = atherosclerotic cardiovascular disease; ACA = 
anterior communicating artery; *F = females, M = males.

comparison metric, the DUN model had a higher predictive 
power than logistic regression, gradient boosting, and 
maxout networks. Ultimately the DUN model successfully 
predicted 76.4% of 30-day readmissions [38].

Cardiology is a rapidly expanding field that is increasingly 
seeing favorable results from the use of neural networks. 
Model details and outcomes for cardiovascular disease 
have been summarized in (Table 1). Most studies described 
in the previous section utilized prediction accuracy as a 
success metric. The success of neural networks in CVD is 
because CVD has a well-defined series of risk factors that 
accurately predict a person’s risk of disease, including 
age, cholesterol, blood pressure, weight, and physical 
activity. CVD is also characterized by defined criteria that 
dictate the presence and severity of disease. For example, 
systolic heart failure is defined by the measurement of 
ejection fraction and prognosis can be predicted by New 
York Heart Association classifications [39]. Myocardial 
infarctions are readily detected by an electrocardiogram 
(EKG), elevated serum troponin, and follow the same risk 
factors as CVD. Reliance on qualitative interpretations data 
is less imperative, as easily obtained quantitative patient 
data can accurately predict a person’s risk.

3.3 – Stroke
A stroke is the process of reduced or absent perfusion 
of blood flow to a region of the brain, causing severe 
neurological deficits and often death. Generally, about 
80% of strokes are ischemic and 20% are hemorrhagic. 
Treatment of ischemic strokes involve careful assessment 
of the disease etiology, medical history, imaging with CT 
or MRI, and potential treatment with thrombolytics or 
embolectomy. Hemorrhagic strokes are contraindications 
to thrombolytics, and often require neurosurgical 
intervention to relieve intracranial pressure and induce 
hemostasis [40, 41].

Patient outcomes from an ischemic stroke inversely 
correlate with the amount of infarcted brain tissue [42]. 
Predicting patient mortality is paramount in directing the 
treatment strategy. Several studies have used imaging 
data to train neural networks to predict ischemic stroke 
outcomes. A retrospective cohort study compared a deep 
neural network, random forest, and logistic regression 
models to Acute Stroke Registry and Analysis of Lausanne 
(ASTRAL) scores at predicting 3 month ischemic stroke 
outcomes [43]. The machine learning models analyzed 38 
inputs and found that the deep neural network significantly 
outperformed the ASTRAL score, while the random forest 
and logistic regression models showed little difference. 
However, when the machine learning models were limited 
to the same six inputs as the ASTRAL score, the deep neural 
network performed similarly to the ASTRAL score. The 
authors conclude that the primary advantage of machine 
learning models is their ability to analyze large amounts of 
diverse information to make an outcome prediction [44].

Another study used MRI imaging data to compare various 
convolutional neural network configurations ability to 
predict the outcomes of 222 ischemic stroke patients 
who were treated with tissue plasminogen activator (tPA) 
versus those who were not treated with tPA. They found 
the deep CNN had significantly greater predictive capability 
compared to the other CNNs, with an AUC of 0.88 in the 
deep CNN and AUCs of 0.85 and 0.72 in the CNNshallow and 
CNNTmax, respectively. The investigation concluded that 
additional layers added to the network improved its ability 
to predict outcomes [45]. The outcomes of the previously 
described investigations are further enforced by a study 
investigating outcomes in patients recovering from post-
thrombectomy and a study combining both MRI imaging 
data and the thrombolysis in cerebral infarction scale. 
Both show improved predictive power compared to the 
study controls [46, 47].

Taylor MA et al., J Cancer Res Ther. 2021, 9(1):1-11
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Hemorrhagic stroke is a devastating condition resulting 
in a one-year mortality greater than 50% [48]. Etiologies 
include hypertension, cerebral amyloid angiopathy, 
arteriovenous malformations, and hemorrhagic 
transformation following acute ischemic strokes [49-52]. 
A study evaluating several machine learning algorithms’ 
ability to predict hemorrhagic transformation severity 
from ischemic strokes found that the Kernel spectral 
regression model had a predictive accuracy of 83.7% [53]. 
Another ANN model was developed to predict anterior 
communicating artery aneurysm rupture risk. The authors 
used 13 inputs including computed tomography (CT) 
angiography data, demographics, and lifestyle risks and 
found their model successfully had a prediction accuracy 
of 94.8% in 594 patients [54].

Present day stroke outcome predictions involve a 
qualitative analysis of many variables including patient 
demographics, injury severity, and prior comorbidities. 
The previously described machine learning models mirror 
that process but enhance the prediction by adding a 
quantitative dimension. Asadi et al. showed that their 
machine learning model independently prioritized the NIH 
Stroke Scale as a leading prognostic factor, which directly 
corresponds to current medical practices [46]. Heo et al. 
and Nielsen et al. demonstrated the primary advantage 
to their machine learning models versus current medical 
standards is their ability to analyze a higher input volume 
and complexity [44, 45]. When those inputs were adjusted 
to match the current standard, there were no differences 
in predictive capabilities.

3.4 – Parkinson disease
Parkinson disease (PD) is a neurodegenerative disorder 
that affects around 1 in 500 people over the age of 40 
[55]. It involves loss of dopaminergic neurons in the 
substantia nigra, leading to physical manifestations such 
as tremor, bradykinesia, rigidity, and postural instability 
[56]. Advanced age is the most prominent risk factor, 
but others include traumatic brain injuries, pesticides, 
certain medications, and genetic predisposition [57, 58]. 
As average lifespans continue to increase, the prevalence 
of PD and other neuromuscular disorders are expected to 
rise. Improved predictive mechanisms can promote early 
onset therapies and neuroprotective interventions.

Generally, PD arises from a multifactorial etiology. But 
certain genetic variants have been shown to increase risk 
of PD. Using 21 single nucleotide polymorphisms (SNPs) 
related to PD as inputs, a comparative analysis of four 
different predictive models was performed to assess 
which model had the highest predictive value for future 
PD development. Additive, multifactor dimensionality 
reduction (MDR), recursive partitioning (RP), and artificial 
neural network (ANN) were all compared. The results 
showed that the ANN had the highest diagnostic utility 
with an AUC = 0.86 by utilizing a sigmoid function from 
hidden to output layer for the categorical output variable. 
Comparatively, the additive, MDR, and RP models had 
AUCs of 0.76, 0.69, and 0.82 respectively [59].

The overall prognosis of PD is variable, with advanced 
age and dementia associated with increased mortality. 

Studies show varying results, but median survival after 
initial diagnosis is approximately 7-14 years [60]. Disease 
progression is typically assessed through its physical 
symptoms. However, a recent study utilized a trained ANN 
to analyze dopamine transporter single-photon emission 
computed tomography images as a potential mechanism 
to monitor PD disease progression. Analysis of images 
obtained from regions commonly affected by PD [caudate, 
putamen, and ventral striatum], they found that the ANN 
model could predict 4 year disease progression with 75% 
accuracy [61].

Studies predicting PD highlight the capabilities of neural 
networks when disease risk factors and variables 
contributing to prognosis are not well defined. Kumudini 
et al. analyzed numerous gene sequences and their 
individual mutations to predict the onset of Parkinson 
disease [59]. Considering the complexity of an individual’s 
genetic code, analysis of that code and its relationships 
to other genes in the human genome require complex 
computing systems like neural networks. Tang et al. found 
that their neural network independently concluded that 
brain imaging and the Unified Parkinson’s Disease Rating 
Scale (UPDRS) complemented each other when predicting 
PD disease progression [61]. Although this conclusion 
is intuitive to clinicians, this is an example of computers 
replicating this human intuition.

3.5 – Alzheimer disease
Alzheimer disease (AD) is another disease process that 
utilizes brain imaging for neural network training. AD is 
a neurodegenerative disorder that is the most common 
cause of dementia in the elderly [62]. AD arises through 
the extracellular deposition of amyloid beta plaques and 
intracellular deposition of neurofibrillary tangles, causing 
widespread central nervous system degeneration and 
subsequent decline in mental function [63]. The etiology 
of disease onset is multifactorial, but studies have shown 
that genetics play a major role in age of onset and rate 
of progression [64–66]. Primary treatment is supportive, 
but many clinical trials have been conducted aimed at 
prediction, early detection, and prolonging the duration 
between diagnosis and complete debilitation [67].

Identifying AD is primarily clinical, but structural MRI 
images detailing white matter lesions and hippocampal 
atrophy can aid in the diagnosis [68, 69]. A convolutional 
neural network (CNN), was created to evaluate 
hippocampal changes via MRI imaging in patients with 
mild cognitive impairment to predict future AD conversion 
with an accuracy of 79.9% [70]. Another study used an 
ANN to predict Mini Mental State Examination (MMSE) and 
Alzheimer Disease Assessment Scale (ADAS) scores in AD 
patients based on hippocampal degeneration and cortical 
thickness seen in MRI imaging. The authors found their 
ANN could predict scores with r-values ranging between 
0.60 – 0.68 for the MMSE and 0.52 – 0.55 for the ADAS [71] 
(Table 1).

These studies demonstrate advanced prediction models 
to differentiate between someone with mild cognitive 
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impairment from advancing age and someone who is 
in the early stages of Alzheimer disease. A diagnosis of 
AD is typically made when symptoms have become too 
severe to be classified as mild cognitive impairment. But 
at that stage, patients may no longer be in the ideal clinical 
therapeutic window to maximally delay severe symptom 
onset [72]. Studies performed by Lin et al. and Bhagwat 
et al. used common clinical tools such as the MMSE and 
MRI imaging to make accurate mathematical predictions 
of whether a person with mild cognitive impairment will 
develop into AD [70, 71]. These results could help guide 
clinicians towards preventative therapies to slow this 
eventual progression.

3.6 – Osteoporosis
As the average lifespan continues to grow, diseases of aging 
continue to increase in prevalence [73]. Bone continuously 
remodels throughout a person’s life to maintain its high 
density and reduce risk of fracture. Osteoclasts resorb 
old or damaged bone and osteoblasts replace those 
areas with new, stronger bone [74]. All persons over the 
age of 30 demonstrate a gradual decline in bone density 
due to a variety of factors, with postmenopausal women 
experiencing the most drastic change [75]. This is largely 
due to decreased estrogen production, which reduces the 
new bone formation by osteoblasts [76]. Other factors 
that increase risk for osteoporosis include age, decreased 
physical activity, genetics, and medications [77–80]. Using 
these risk factors to predict the likelihood of disease 
development can allow early preventative measures and 
reduce fracture-related mortality in elderly patients.

Past studies have found that ANNs outperformed 
standard statistical models when predicting osteoporosis 
development [81, 82]. A study analyzed data from the 
Korea National Health and Nutrition Examination Surveys 
using various machine learning algorithms to predict 
osteoporosis risk in postmenopausal women. The study 
found that support vector machines had the highest 
predictive value with an AUC of 0.827 compared to the ANN 
with an AUC of 0.807 [83]. Considering that hip fractures 
are one of the most significant predictors of mortality in the 
elderly, an ANN used survey data from 725 respondents to 
stratify their risk of hip fracture. They found that a simple 
3-layer ANN successfully predicted hip fractures in 85% of 
cases in females and 93% of cases in males. Their model 
also identified the 10 greatest risk factors for hip fracture 
by ranking the importance of each input through leave 
1 out and connection weight methods. Neither method 
proved to be better than the other [84].

In osteoporosis, the primary goals of treatment are to 
slow bone degeneration and prevent bone fractures. 
Yoo et al. concluded that their neural network excelled 
at incorporating epidemiological risk factors with bone 
density measurements to stratify a person’s risk of 
osteoporosis. However, their model was unable to account 
for concurrent medication use that could also play a large 
role in bone density [83]. Liu et al. analyzed 74 and 67 risk 
factors for bone fracture in women and men respectively 
and used various computational techniques to stratify the 
top hip fracture risk factors independent of human input. 
The neural network determined total bone mineral density, 
declining cognition, and self-assessment of a person’s 

health were leading risk factors leading to hip fracture [84]. 
These findings directly correlate to current clinical practice, 
and further reinforce the capability of neural networks to 
stratify risk factors in disease prediction.

3.7 – Adverse drug reactions
It has been estimated that over 2.2 million people per year 
in the United States were hospitalized due to adverse drug 
reactions (ADRs), with approximately 130,000 of those 
reactions becoming fatal [85]. Prediction and detection of 
ADRs remains difficult, often relying on time-consuming 
reporting processes, insufficient data, and professional 
repercussions [86]. In the last several years, many have 
proposed utilizing machine learning algorithms to analyze 
elaborate troves of computerized healthcare data to more 
successfully predict and prevent future ADRs [87, 88].

Researchers from the National Cheng Kung University in 
Taiwan designed a deep neural network to predict adverse 
drug reactions (ADRs). The neural network model utilized a 
drug’s molecular properties, biological effects, and reports 
of previous ADRs. The results showed the network had a 
precision of 0.523 and AUC of 0.844 for predicting ADRs. 
The study was limited due to the ANN model requiring a 
pre-defined set of ADRs for the ANN to predict. The authors 
limited their outputs to 1325 possible reactions. However, 
the true number of possible ADRs may be limitless [87]. 
Another study analyzed chemical structures commonly 
associated with ADRs with a deep learning framework. 
They compared their results to ten other molecular 
fingerprint models and found the neural networks had the 
highest predictive utility. Perioral dermatitis was the most 
successfully predicted ADR with a sensitivity of 74.2%, 
specificity of 95.0%, and AUC of 0.957 [89]. These results 
have been further expanded by using a neural network 
to predict drug-drug interactions. The authors analyzed 
drug structures, targets, side effects, indications, and 
molecular pathways. When comparing numerous drug 
combinations, their model had an AUC between 0.954 – 
0.994 for predicting adverse drug interactions [90].

Studies using neural networks to predict adverse drug 
reactions are scarce. However, these findings are not 
unexpected. Adverse drug reactions are discovered 
through the drug development process, involving in vitro, 
in vivo, animal, and Phase I-IV Clinical Trials. The process 
relies on medication trials and careful monitoring of the 
effects, with the findings of the preceding stages alluding 
to the findings at each subsequent stage. Similarly, neural 
networks rely on past data for training. But often that data 
is incomplete or unknown (e.g., genetics, environment, 
medical data). Neural networks can predict a defined set 
of outcomes. But when those outcomes are not defined, 
neural networks lose their utility. Neither study described 
utilizes patient-level data or assesses if such data has an 
influence on the probability of an adverse reaction.

4.0 – Discussion

Neural networks and machine learning are beginning 
to make their effects known in the healthcare industry. 
Healthcare systems have already implemented machine 
learning algorithms to predict a patient’s risk for transfer 
to the intensive care unit (ICU) and EKG strips are often 
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pre-screened by computer systems to quickly identify 
pathologic patterns [91, 92]. A recent study identified 
29 FDA-approved artificial intelligence-based medical 
devices and algorithms. Interestingly, only one algorithm 
involved prediction while the rest focused on diagnosis 
and classification analysis. These results correlate with the 
findings in (Figures 2 & 3) indicating that disease detection 
with machine learning has seen the greatest success in 
healthcare thus far. But despite its promising potential, 
machine learning has not taken the massive foothold in 
everyday medicine, as some had predicted [93].

The representative investigations in this literature review 
highlight the success, pitfalls, and future potential of neural 
networks. The aforenoted studies showed both simple and 
deep neural networks had improved disease prediction 
when compared to other predictive computer models. 
Some studies showed the ability of neural networks to 
independently identify the input variables that had the 
greatest impact on outcome prediction. But notably, the 
weights and biases that connect each layer of the network 
were not adequately described in any of the studies. 
Another trained network architecture could lead to similar 
results, but study repetition and subsequent application of 
the successfully trained neural network would be difficult 
to implement without knowing the magnitudes each node 
has on the entirety of the system. In (Table 1), AUC is the 
most described success metric across all studies. This 
makes sense as AUC is a better metric than accuracy when 
the total amount of each measured outcome is drastically 
skewed. For example, in studies predicting Stroke mortality 
(Section 3.3) AUC was utilized in all studies while accuracy 
was only used in two studies. Overall stroke mortality is 
estimated to be 7.5% [94]. If the neural network picked the 
outcomes, survival vs. death, by random chance, it would 
still have a favorable accuracy due to the overall data bias 
towards one outcome. AUC accounts for data bias by not 
relying on classifier thresholds, thus discriminating against 
true positives and false positives in a dataset vulnerable to 
a high false positive rate.

The size of the neural net architecture varies widely 
within and across diseases. Investigators emphasize three 
challenges consistently, (1) lack of context recognition 
(2) data availability (3) black box computing. The average 
cohort size for the previously described studies is 1,897 
patients when adjusted for outliers. This is an expected 
number for conventional medical studies, but neural 
networks thrive in data environments with an abundance 
of datapoints. Privacy laws and fragmented medical 
records hinder the ability of neural networks to reach their 
full predictive potential. Additionally, reproducibility and 
reliability of neural networks is hindered by the ‘black box’ 
phenomenon. Inability to stratify the influence of adjustable 
parameters, learning rates, and function forms in each 
network raises a significant barrier to troubleshooting 
volatile neural networks.

4.1 – Context recognition
Machine learning algorithms excel in environments where 
pattern recognition holds true. Chronic HIV infection 
almost always originates from high risk behaviors, 
presents with eventual immunologic compromise, and 

warrants itself to highly accurate screening tests [95, 
96]. This has made machine learning successful in HIV 
detection and prevention [97]. But most diseases have 
varying presentations that rely heavily on context and the 
personal expertise of clinicians. Cabitza et al. notes that 
presently, machine learning algorithms are unable to 
account for the qualitative aspects of medicine and only 
rely on the interpretation of their quantitative inputs [98]. 
This point is reinforced when neural networks are used 
to predict adverse drug reactions. Ignoring context can 
lead to misleading conclusions. A machine learning model 
designed to predict mortality in patients with pneumonia 
versus those with pneumonia and asthma concluded that 
patients with pneumonia and asthma had a lower risk for 
mortality. Statistically this result is correct, but this result 
remains to be untrue from an intuitive sense. The machine 
learning model was unable to account for asthmatic 
patients with pneumonia being directly admitted to 
intensive care units, which resulted in higher levels of care 
and lower incidence of complications [99].

4.2 – Data availability
Computing has made the analysis of large datasets 
a manageable reality. Electronic health records have 
digitized troves of health data that may hold secrets to 
unlocking many mysteries in medicine. But with most data, 
maintaining privacy is a priority. The Health Insurance 
Portability and Accountability Act (HIPAA) has reasonably 
protected the dissemination of identifying healthcare 
data. This has made accessibility to healthcare data 
difficult to attain, leading to fragmented datasets that 
hinder a neural network’s predictive capabilities [100]. For 
example, a patient with heart failure, diabetes, and a prior 
stroke is likely receiving care from three separate specialist 
physicians. If those physicians do not belong to the same 
hospital system their records are likely not shared with 
one another, leading to a fragmented medical record for 
that patient. Several attempts have been made to design 
networks that compensate for this data discrepancy, with 
inconsistent results that would not withstand rigorous 
quality assurance measures required for widespread 
implementation in healthcare [101, 102]. Results from 
isolated studies are promising. But without seamless 
confluence of medical records nation-wide, neural 
networks may never have the complete data necessary to 
accurately predict individual patient outcomes.

4.3 – Black box computing
Another important obstacle is the presence of the ‘black 
box’ computing that takes place within the hidden layer 
of an ANN. In fields like medicine where decisions have 
life-altering consequences, the experts making those 
decisions value having intricate knowledge of each step 
required to make those decisions. Neural networks 
process large amounts of data with a process unknown 
to both the end-user and developer. Neural networks are 
meant to adapt over time to improve accuracy, but this can 
lead to unpredictable behavior patterns that can become 
dangerous [103]. A recent example is Watson Health by 
IBM suggesting erroneous cancer treatments. Critics 
say Watson was unable to adapt to the complexity of 
individualized oncologic therapy; partly due to incomplete 
data and lack of context recognition, leading to further 
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distrust of machine learning in medicine [104]. However, 
London 2019, argues that many decisions in medicine 
must be made with uncertainty. Often the value of a 
beneficial result triumphs knowing the exact mechanistic 
details behind the result [105].

5.0 – Conclusion

In medicine, machine learning plays the role of a double-
edged sword. One perspective views machine learning as a 
future indispensable tool that improves diagnostic accuracy 
and clinical efficiency. The other perspective emphasizes 
caution, knowing that intelligent computer systems lack 
insight into context and can make technically accurate, 
but situationally incorrect decisions that may cause harm 
to patients. Rather than viewing machine learning in 
medicine as a threat to job security and patient safety, it 
should be viewed as a powerful tool in its primal stages. 
Machine learning has the unique capability of analyzing 
the functional relationships of vast complex medical data. 
But obstacles such as contextual recognition, fragmented 
patient data, and black box computing are hindering neural 
networks from reaching their full potential. Continued 
research into this tool is imperative to its success, where 
it may globally improve patient outcomes and completely 
reshape the field of medicine.
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